При работе с большими объёмами данных Python может «тормозить», особенно при обработке сотен тысяч строк или обучении сложных ML-моделей.
🎯 Ниже — два приёма, которые позволят ускорить обучение и загрузку данных в десятки раз.
1️⃣ Используйте GPU с включённым memory growth
По умолчанию TensorFlow может попытаться занять всю память видеокарты, что приводит к ошибке OOM. Решение — включить «постепенное» выделение памяти:
gpus = tf.config.experimental.list_physical_devices('GPU') if gpus: for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True)
2️⃣ Оптимизируйте загрузку данных с `tf.data`
Загрузка Excel-файла — типичное узкое место (Disk I/O). Использование tf.data.Dataset с prefetch позволяет загружать и обрабатывать данные асинхронно.
Пример:
dataset = tf.data.Dataset.from_generator( data_generator, output_signature={col: tf.TensorSpec(shape=(), dtype=tf.float32) for col in data.columns} ).shuffle(1000).batch(32).prefetch(tf.data.AUTOTUNE)
📎Вывод: GPU и tf.data с правильной настройкой дают мощный прирост производительности. Особенно важно при работе с крупными ML-пайплайнами и в продакшене.
При работе с большими объёмами данных Python может «тормозить», особенно при обработке сотен тысяч строк или обучении сложных ML-моделей.
🎯 Ниже — два приёма, которые позволят ускорить обучение и загрузку данных в десятки раз.
1️⃣ Используйте GPU с включённым memory growth
По умолчанию TensorFlow может попытаться занять всю память видеокарты, что приводит к ошибке OOM. Решение — включить «постепенное» выделение памяти:
gpus = tf.config.experimental.list_physical_devices('GPU') if gpus: for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True)
2️⃣ Оптимизируйте загрузку данных с `tf.data`
Загрузка Excel-файла — типичное узкое место (Disk I/O). Использование tf.data.Dataset с prefetch позволяет загружать и обрабатывать данные асинхронно.
Пример:
dataset = tf.data.Dataset.from_generator( data_generator, output_signature={col: tf.TensorSpec(shape=(), dtype=tf.float32) for col in data.columns} ).shuffle(1000).batch(32).prefetch(tf.data.AUTOTUNE)
📎Вывод: GPU и tf.data с правильной настройкой дают мощный прирост производительности. Особенно важно при работе с крупными ML-пайплайнами и в продакшене.
Telegram is a cloud-based instant messaging service that has been making rounds as a popular option for those who wish to keep their messages secure. Telegram boasts a collection of different features, but it’s best known for its ability to secure messages and media by encrypting them during transit; this prevents third-parties from snooping on messages easily. Let’s take a look at what Telegram can do and why you might want to use it.
Traders also expressed uncertainty about the situation with China Evergrande, as the indebted property company has not provided clarification about a key interest payment.In economic news, the Commerce Department reported an unexpected increase in U.S. new home sales in August.Crude oil prices climbed Friday and front-month WTI oil futures contracts saw gains for a fifth straight week amid tighter supplies. West Texas Intermediate Crude oil futures for November rose $0.68 or 0.9 percent at 73.98 a barrel. WTI Crude futures gained 2.8 percent for the week.
Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение from ye